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Many suggested applications of active noise control involve the presence of a background
air flow such as in ventilation ducts, exhaust stacks and the radiation from turbofan
engines. This paper is a theoretical study aimed at assessing the effect of a uniform flow
on the ability of simple sources actively to control free field sound power radiation. In
particular, the minimum sound power radiated by two point volume velocity sources
situated in an unbounded uniform fluid which moves with a uniform steady velocity is
determined. Also the maximum sound power that can be absorbed by a point volume
velocity source from an incident plane wave is determined.
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1. INTRODUCTION

Many applications for which active control has been investigated have as an additional
complication the presence of a background flow. Such applications include, for example,
the suppression of noise transmitted along ventilation ducts and exhaust stacks, or the
reduction in level of fan tones radiated from aircraft turbofan engines. These examples
encompass a wide range of flow speeds, from Mach numbers of up to 0·1 in the case of
ventilation ducts, to about 0·5 in the intake of a turbofan engine on an aeroplane on
approach. This paper is concerned with the influence of a steady, uniform, subsonic flow
on the ability of idealized elementary volume velocity sources to control the sound power
radiated by other, similar sources in a free field. Two model problems investigated
previously for a medium at rest [1, 2] are analyzed, but with the important addition of a
mean flow.

2. ACOUSTIC ENERGY IN UNIFORM FLOW

The definition of acoustic energy in a fluid medium in motion is far less straightforward
than for a medium at rest; the fundamental difficulties involved are made clear by Morfey
[3]. The difference in the exact expressions for the acoustic energy density E(r, t) and
acoustic intensity I(r, t) in a moving fluid, and the corresponding quantities for the mean
background flow (i.e., without sound) involve second order terms that, in general, will not
be products of two first order terms that can be deduced from the linearized equations
of fluid mechanics. Any other definition of sound energy in fluid flow must be arbitrary
and will not be a true measure of mean energy flux carried by the acoustic disturbance.
Nevertheless, a definition of acoustic energy in flow which possesses the continuity
property 9 · I=0 under steady state conditions in a source free region is extremely useful.
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The following discussion of acoustic energy in the presence of flow appears to have
gained widest acceptance since it satisfies a conservation law under a wide range of
conditions. However, the analysis presented here will be confined to ideal fluid flows,
whereas in the more general treatment by Morfey [3] account is taken of dissipative
processes, viscous forces and entropy production. An addition made here to Morfey’s
analysis is the inclusion of a volume velocity source term which is of particular interest
in what follows.

The starting point of the analysis is an energy balance equation for isentropic and
irrotational flows. This is obtained by combining the linearized equations of mass and
momentum conservation to give [4]

1E/1t+9 · I1 r0 (H'q'+m' · f '), (1)

where r0, H'(r, t) and m'(r, t) are the ambient mass density, fluctuating total enthalpy and
mass flux respectively and q'(r, t) and f '(r, t) are the source terms of fluctuating volume
velocity and body force distribution per unit volume. The generalized acoustic energy
density and intensity can be expressed in terms of the fluctuating pressure p', ambient
sound speed c0, particle velocity u' and mean flow velocity V in the form [3]

E=
p'2

2r0 c2
0
+0r0 u'2

2
+

p'u' · V
c2

0 1, I=H'm'=0p'
r0

+ u' · V10r0 u'+
p'V
c2

0 1. (2, 3)

The approach due to Levine [5] is now followed for computing the sound power output
for the point monopole source q'(r, t)=Q'(t)d(r− rs ) and point dipole source
f '(r, t)=F'(t)d(r− rs ), where Q'(t) and F'(t) are their respective source strengths per unit
volume and d is the Dirac delta function. For irrotational, isentropic flows, equation (1)
is a statement of energy conservation. This equation can be integrated over a fixed control
volume V surrounding the sources to give the following equation which specifies an exact
balance between the rate of change of acoustic energy within V, plus the outflow of
acoustic energy from the bounding surface S and the net supply of acoustic energy by the
sources:

d
dt gV

E dV=gV

r0 (H'q'+m' · f ') dV−gS

I · n̂ dS. (4)

The surface integral follows from Gauss’ divergence theorem applied to I, where S is the
surface bounding V and n̂ is an outward-pointing unit normal vector. For statistically time
stationary signals, the total time averaged energy in V remains constant so that the total
time averaged radiated sound power may be obtained by integrating the normal
component of acoustic intensity over S, which yields

W� =gS

I� · n̂ dS= r0 (H'(rs )Q'+m'(rs ) · F'), (5)

where the overbar denotes time averaging. The sifting property of the Dirac delta function
has been used to reduce the integral of the source distribution over the volume to a
straightforward evaluation of the acoustic pressure and particle velocity at the source point
rs . Equation (5) may be expressed in terms of the acoustic pressure and particle velocity
[4] to become

W� =(p'(rs )+ r0 V · u'(rs ))Q'+ (u'(rs )+ p'(rs )V/r0 c2
0) · F'. (6)
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This expression involves only quantities at the source location which constitute the source
loading and consequently avoids the potentially cumbersome integration of far field
acoustic intensity suggested by equation (4).

In an irrotational flow, 9× u'=0, and the acoustic particle velocity u' and acoustic
pressure p' for an inviscid fluid can be deduced from the velocity potential by using

u'=9f', p'=−r0 Df'/Dt=−r0 (1f'/1t+V · 9f'). (7, 8)

Substituting equations (7) and (8) into equation (6) yields the sound power output due to
the point monopole and dipole sources as

W� =−r0
1f'(rs )

1t
Q	 '+09f'(rs )−01f'(rs )

1t
+V · 9f'(rs )1 V

c2
01 · F' . (9)

The first term on the right side of equation (9) for the contribution to the total sound power
by the monopole source has previously been derived by Levine [5] by following a different,
but essentially equivalent, procedure. This first term has no explicit dependence on the flow
velocity V. Velocity potential is therefore a more natural quantity for describing energy
produced by volume velocity sources, unlike the second term for the dipole source sound
power output which is now of greater algebraic complexity than the earlier expression of
equation (6).

3. FREE FIELD MONOPOLE SOURCE RADIATION IN UNIFORM FLOW

The unsteady velocity potential f'(r, t) due to a point monopole velocity source, situated
at rs , with source strength density Q', satisfies the inhomogeneous convected wave equation

92f'−
1
c2

0 0 1

1t
+Vx

1

1x1
2

f'=−Q'(t)d(r− rs ). (10)

The free field solution f'(r, v)=f	 (r) ejvt for harmonically time varying sources
Q'(t)=Q	 ejvt, is given by [5]

f	 (r)=−Q	
e−jk(−Mx x+zx2 + (1−M2

x)y2)/(1−M2
x)

4pzx2 + (1−M2
x)y2

, (11)

where (x, y) denotes the co-ordinates of the point defined by the vector (r− rs ), Q	 is the
complex monopole source strength and Mx =Vx /c0. Equation (11) can be re-written more
compactly in terms of a new set of co-ordinates [6] defined by x̄= x/b2, ȳ= y/b and
R�=(x̄2 + ȳ2)1/2, to give

f	 (r)=−Q	 ejMx kx̄−jkR�/4pb2R�, (12)

where b is the Lorentz factor b=z1−M2
x . The advantage of using the ‘‘similarity

variables’’ (x̄, ȳ, R�) is that many formulas involving mean flow have the same functional
form as for those with no mean flow, except that there is always an additional factor ejkMx x̄.

4. MINIMUM SOUND POWER OUTPUT OF TWO POINT SOURCES IN UNIFORM FLOW

In Figure 1 are depicted two point volume velocity sources separated by a distance d
with their axis at an angle u to the x direction. The sources radiate into an unbounded
uniform fluid which moves with a uniform steady velocity V=(Vx , 0, 0). At a single
frequency v, the first term on the right side of equation (9) for monopole source sound
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power output averaged over a period becomes W� = 1
2 vr0 Im {f	 *(rs )Q	 }. The total sound

power radiated by the source pair may be deduced from the velocity potential at the
respective source locations in order to give

W� =(vr0 /2) Im {(f	 *p (rp )+f	 *s (rp ))Q	 p +(f	 *p (rs )+f	 *s (rs ))Q	 s}. (13)

In this expression, Q	 p and Q	 s denote the respective complex primary and secondary source
strengths and, for example, f	 s (rp ) refers to the velocity potential at the primary source
location due to the secondary source. Using equation (12) to evaluate the velocity potential
terms appearing in equation (13) leads to the following expression for the total sound
power:

W� = 1
2 ZM [=Q	 p =2 + =Q	 s =2 +2 Re {Q	 *s Q	 p e−jkMx d�x}(sin kd�)/kd�], (14)

where d�=(d�2
x + d�2

y)1/2, d�x = d cos u/b2 and d�y = d sin u/b. Re-writing the primary and
secondary complex source strengths in magnitude and phase form, Q	 p = =Q	 p = ejsp ,
Q	 s = =Q	 s = ejss and completing the square gives

W� = 1
2 ZM [=Q	 p =2 + (=Q	 s =+ =Q	 p = cos (sp − ss − kMx d�x ) (sin kd�)/kd�)2

− =Q	 p =2 cos2 (sp − ss − kMx d�x ) ((sin kd�)/kd�)2]. (15)

The magnitude of the secondary source strength =Q	 s = that removes the second term in
equation (15) is =Q	 s ==−=Q	 p = cos (sp − ss − kMx d�x ) (sin kd�)/kd�, which leaves

W� =W�p (1−cos2 (d− kMx d�x ) (sin2 kd�)/(kd�)2), (16)

where d= sp − ss is the difference in phase between the two sources. The term W�p is the
sound power output due to the primary source in the absence of the secondary source and
is given by

W�p = 1
2 ZM =Q	 =2, where ZM =Z0 b−2, Z0 =v2r0 /4pc0, (17)

in which Z0 is the radiation resistance of a point monopole source radiating into a free
field at rest [5]. The presence of a uniform flow therefore increases W�p (through convective
amplification) by the factor b−2, compared with the power produced in a medium at rest
[7]. The phase relationship of the secondary source to the primary source that minimizes
the total radiated sound power is readily identified from equation (16) as ss = sp + kMx d�x .
The optimal secondary source strength Q	 so , and the minimum sound power output W�o ,
are therefore given by

Q	 so =−Q	 p e−jMx d�x (sin kd�)/kd�, W�o =W�p (1− (sin2 kd�)/(kd�)2). (18, 19)

Figure 1. Two free field point monopole sources in a uniform flow.
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Figure 2. Contours of secondary source position relative to the primary source in a uniform flow for which
total sound power reduction is 10 dB at Mach numbers 0·0, 0·2, 0·4, 0·6 and 0·8.

Equation (19) for the minimum sound power output in uniform flow in the co-ordinate
system (x̄, ȳ, R�) has exactly the same functional form as the zero flow result [1], with d�
replacing d, the physical distance between the two sources. This observation is surprising
in view of the way the flow velocity enters the definition of acoustic intensity of equation
(3). The definition of sound power in flow adopted in the paper and the subsequent
co-ordinate transformations defined above generalizes the earlier result derived by Nelson
et al. [1] to include the influence of a mean flow. Likewise, this approach suggests a way
of including the effects of a mean flow on the minimum sound power emitted from more
complicated source geometries [1].

The transformations d�, d�x and d�y defined earlier may be combined to give
d�/d= b−2zcos2 u+ b2 sin2 u . This expression has been used together with the result that
kd�0·1 1 0·56 in equation (19) gives W�0 /W�p =0·1 to compute contours of secondary source
position relative to that of the primary source at which the total sound power output is
reduced by 10 dB. The results are presented in Figure 2 for Mach numbers in the range
between 0 and 0·8. The units of distance are normalized to the zero flow acoustic
wavelength l= c0 /f. It is shown in Figure 2 that fluid flow past the source pair is
consistently detrimental to the effectiveness of active sound power minimization.
Increasing the flow speed reduces the range over which the point secondary source can
reduce the radiation resistance of the neighbouring primary source and hence reduce its
sound power output. The sources are required to be closer together than when in a medium
at rest to achieve the same sound power reduction in the flow. The greatest sound power
reductions are obtained when the axis of the source pair is perpendicular to the flow
direction, and least reductions obtained when the axes are aligned with the flow direction.
Note also the symmetry of the contours, suggesting that equal sound power reductions
are obtained from the secondary source located at the same distance upstream, and
downstream, of the primary source.
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The source separation distance d= dD at which the sound power output is reduced by
a factor of D may be estimated from the small argument approximation
1− (sin2 x)/x2 = x2/3+O(x4) applied to equation (19). The result is

dD

l
=

z3D

2p

b2

zM2
x cos2 u+ b2

+O(D3/2). (20)

This equation can be compared with the general polar equation (r, u) of an ellipse with
semi-major axis a (in the direction of u= p/2), semi-minor axis b and eccentricity o

r= ab/za2o2 cos2 u+ b2. Secondary source position contours of sound power reductions
by a factor of D are therefore approximately elliptical with dimensions

a=z3Db/k, b=z3Db2/k, and o=Mx . (21–23)

Volume velocity sources aligned in the direction of the flow are therefore required to be
closer together by a factor of z(1−M2

x) in order to achieve the same maximum sound
power reduction produced by the source pair when their axis is perpendicular to the
direction of flow, and by a factor of (1−M2

x) when the sources are aligned with the flow.

5. ACTIVE ABSORPTION OF SOUND POWER FROM A FREE FIELD PLANE WAVE IN
UNIFORM FLOW

In this section a brief examination is presented of a problem closely related to the case
investigated in section 3, but with the field due to the point primary source replaced by
a plane progressive wave propagating at an arbitrary angle to the direction of flow (see
Figure 3). The secondary source can now no longer act at the primary source to reduce
its radiation efficiency, which is likely to be the case for a large complex radiator. The
secondary source is therefore restricted to extracting sound power from the plane wave
with the purpose of reducing its pressure amplitude in the far field. The aim in this section
is to quantify the influence of a uniform flow on the efficiency of a simple point volume
velocity source in absorbing acoustic power from the plane wave. The identical problem
for a medium at rest is presented by Nelson et al. [1].

A progressive plane wave with velocity potential amplitude f	 po propagating at an angle
u to the x-axis is of the form

f	 p =f	 po ejMx kx̄−jkzx̄2 cos2 u+ ȳ2 cos2 u. (24)

The total sound power radiated by the secondary source W�s is the sum of the contributions
due to secondary source radiating in isolation, plus the change to the source loading from
the incoming plane wave

Figure 3. Free field point monopole source in a plane wave field with a uniform flow.
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W�s = 1
2 ZM =Q	 s =2 + (vr0 /2) Im {f	 *p (rs )Q	 s}. (25)

The minimum secondary source power output can be readily deduced by following a
procedure identical to that outlined in section 4 to solve for the optimal source strength
Q	 so and the maximum sound power of absorption W�sa . This gives

Q	 so = pc0 b2f	 p (rs )/2v, W�sa =−1
2 pr0 c0 b2=f	 po (rs ) =2. (26, 27)

The velocity potential amplitude f	 po is independent of the flow speed as shown by the form
of the inhomogeneous wave equation specified by equation (10). The presence of a uniform
flow therefore reduces the sound power that the point source can absorb by the factor
b2 = (1−M2

x): the same factor which amplifies its sound power radiation. Thus, sound
power radiation and sound power absorption are essentially reciprocal processes. Active
sound power absorption may not, therefore, be an efficient noise control strategy in very
high speed flows. The effect of flow on the maximally absorbing source can be expressed
as

W�sa (Mx )=W�sa (0) (1−M2
x). (28)

The optimal sound power absorbed by a monopole source is independent of the angle
between the direction of the flow field and the direction of acoustic propagation in the
radiation field. This is because velocity potential amplitude, which constitutes the source
loading for sound power radiation in uniform flow according to equation (24), does not
depend on flow speed.

6. CONCLUSIONS

The presence of a uniform flow has been shown to have a consistently adverse effect
on the ability of simple volume velocity sources to control free field sound power radiation.
The influence of convection on the ability of volume velocity sources to control the
radiation from other volume velocity sources, and also to absorb the sound power from
an incident plane progressive wave, has been shown to vary as O(M2). Only applications
for which the flow speed is very high are therefore significantly affected by the presence
of a uniform flow, such as, for example, in the case of the turbofan engine.
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